133 research outputs found

    ViewDF: a Flexible Framework for Incremental View Maintenance in Stream Data Warehouses

    Get PDF
    Because of the increasing data sizes and demands for low latency in modern data analysis, the traditional data warehousing technologies are greatly pushed beyond their limits. Several stream data warehouse (SDW) systems, which are warehouses that ingest append-only data feeds and support frequent refresh cycles, have been proposed including different methods to improve the responsiveness of the systems. Materialized views are critical in large-scale data warehouses due to their ability to speed up queries. Thus an SDW maintains layers of materialized views. Materialized view maintenance in SDW systems introduces new challenges. However, some of the existing SDW systems do not address the maintenance of views while others employ view maintenance techniques that are not efficient. This thesis presents ViewDF, a flexible framework for incremental maintenance of materialized views in SDW systems that generalizes existing techniques and enables new optimizations for views defined with operators that are common in stream analytics. We give a special view definition (ViewDF) to enhance the traditional way of creating views in SQL by being able to reference any partition of any table. We describe a prototype system based on this idea, which allows users to write ViewDFs directly and can automatically translate a broad class of queries into ViewDFs. Several optimizations are proposed and experiments show that our proposed system can improve view maintenance time by a factor of two or more in practical settings.1 yea

    Enhancing the Unified Streaming and Non-streaming Model with Contrastive Learning

    Full text link
    The unified streaming and non-streaming speech recognition model has achieved great success due to its comprehensive capabilities. In this paper, we propose to improve the accuracy of the unified model by bridging the inherent representation gap between the streaming and non-streaming modes with a contrastive objective. Specifically, the top-layer hidden representation at the same frame of the streaming and non-streaming modes are regarded as a positive pair, encouraging the representation of the streaming mode close to its non-streaming counterpart. The multiple negative samples are randomly selected from the rest frames of the same sample under the non-streaming mode. Experimental results demonstrate that the proposed method achieves consistent improvements toward the unified model in both streaming and non-streaming modes. Our method achieves CER of 4.66% in the streaming mode and CER of 4.31% in the non-streaming mode, which sets a new state-of-the-art on the AISHELL-1 benchmark.Comment: Accepted by INTERSPEECH 202
    • ā€¦
    corecore